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Abstract

A surveillance video can be analyzed by identifying activities at vari-
ous levels of hierarchy- individual person, groups of persons and overall (or
scene level). Most of the existing literature focuses on scene activity recog-
nition and ignores multiple groups with different activities within a scene.
Group level information can be employed for high-level applications such as
abnormal activity detection and is important to understand the scene in its
completeness.

We propose a deep hierarchical framework to analyze a video at three
levels of hierarchy - individuals, groups of persons and overall scene. Un-
like most of the existing approaches, our framework additionally discovers
groups of people within a scene and identifies the corresponding group ac-
tivity . We propose an objective function which learns amount of pairwise
interaction (compatibility) between any two persons in a scene. We also
train our own state of the art pedestrian pose (orientation) detector. As a
minor contribution, we suggest post-processing steps to improve pedestrian
detection for static cameras.

We evaluated our approach on standard datasets for group and scene
activity, pose estimation and pedestrian detection. The results of scene ac-
tivity are competitive with state of the art methods. Critically, unlike other
approaches, our framework also detects groups of persons in a scene and the
corresponding group activities with fair accuracy. Our pose detector out-
performs existing approaches. We also observe improvement in pedestrian
detector performance due to the suggested post-processing algorithm. (To
add: Does adding an extra step of computing group activities really help in
scene activity? Does this approach help in surveillance?)

'Deep hierarchical framework for group and scene activity recognition was developed
in collaboration with Neha Bhargava. Neha is associated with Vision and Image Pro-
cessing Lab, Department of Electrical, IIT Bombay.
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Notations

Unless stated otherwise:

Scalars are represented by simple fonts - a, A, § etc.
Vectors and matrices are denoted by bold letters - a, A, A etc.
Styled fonts like C, S, B etc. are used for arbitrary sets.

Double lined styled fonts denote sets of numbers, for example, set of
all real numbers is represented by R.

Rax0xeX s a . x b x ¢ x ... dimensional space of real numbers.

A € Rxbxexindicates A is a a X b x ¢ x ... dimensional array of real
numbers.

12



Chapter 1

Introduction

We are living in a digital world, surrounded by electronic devices every-
where. These devices are designed to assist humans in carrying various tasks
easily and efficiently. For example, imaging sensors like CCTV cameras en-
able monitoring of multiple locations from a centralized system, reducing
the need of human presence. According to a survey by British Security
Industry Authority (BSIA) [1], the number of CCTV cameras in the UK
could be as high as one for every 11 people. With these numbers ever in-
creasing, the human workforce is clearly inadequate to analyze these videos.
Even though CCTVs are very useful for analyzing a scene after an event
has happened, they are rarely used to detect or predict events.
Most of the surveillance videos can be divided into two categories:

e Involving humans - for e.g. classrooms, footpaths, hallways, shops etc
e Not involving humans - for e.g. roads, parking lots, industries

In this work, we will solely focus on videos involving humans. The following
sections elaborate on the scenarios and video recording settings we focused
on in this study, followed by an overview of the problem.

1.1 Events and Activities

An event can be defined by various activities happening in a scene.

Example 1.1 In a football game, different players can carry out different
activities. Suppose a striker is shooting the ball towards goal, the defenders
are trying to tackle and the goalkeeper is trying to block the shot. Here,
one team is attacking and the other team is defending. From the above
information, we can infer that a ”shot on target” event has happened.

It is interesting to note that in the above example, activities can be
defined at various levels of hierarchy - individual player, group (team) and
overall. We can divide activities into four types (refer to Figure 1.1 for
examples):

13



1.2. VIDEO AND CAMERA CHAPTER 1. INTRODUCTION
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S .

Pizza Tossing

(a) Gesture [37]

(c) Pairwise interaction [13]

(d) Group activity [9]

Figure 1.1: Ilustration of types of activities. Snapshots taken from popular
datasets (see reference for details)

1. Gestures and expressions
2. Actions
3. Pairwise interaction

4. Group activity

To focus on scenarios that generally arise in surveillance, we restrict the
scope of this work to following class of actions:

1. Action - walking, standing, running, cycling, falling, bending etc.
2. Degree of pairwise interaction i.e. interaction or no interaction.

3. Group activity - walking together, talking, queuing, crossing a road,
waiting together.

1.2 Video and Camera

There are numerous settings which can vary across surveillance videos -
camera model, the number of cameras, video resolution, camera motion,
the location of recording, proximity to the scene, crowd density, presence
of objects like cars to list a few. Before going any further, it’s critical to
mention the types of videos we analyzed.

14



CHAPTER 1. INTRODUCTION 1.3. OVERVIEW

Video i T, L L
Sequence Pose —\_) :

+ A
Scene —|—> Detection

Y N

Information
i >  Tracking I

)
»

sdnolin
JO uonedynuep|
Y
Auanoy dnoun
sjuang
/ Aoy 9u80g

Figure 1.2: A flowchart depicting steps involved in activity recognition and
event detection. Except for tracking, we address each step mentioned in
this figure.

1.2.1 Location

We worked on both indoor and outdoor scenes in varying environments. In
fact, as we will see later, the information about location actually helps in
recognizing group activity. The videos have low crowd density, generally
consisting of not more than 20 persons. Each person occupies only a small
fraction of the frame and heights of persons vary in the range of 10% to 80%
of the height of the frame. Although there’s no restriction on illumination,
it is important to have sufficient illumination so that the scene is clearly
visible.

1.2.2 Camera

We worked with monocular videos recorded from RGB cameras with resolu-
tion around 720x640 pixels. The camera can be fixed, hand-held or even car
mounted. However, fixed cameras do offer better performance due to lack of
self (ego) motion. Ego-motion of hand-held and car-mounted cameras can
be compensated using techniques like correlation or by tracking SIFT-like
features. Cameras are placed at a minimum height of one meter. It is worth
mentioning that lower camera heights lead to greater ambiguity in tracking
vertical coordinates of objects. Videos are recorded at frame rates between
20 to 30 fps.

1.3 Overview

Analysis of video for surveillance is one of the most complex problems in
computer vision. A bottom-up approach sees the problem as a combina-
tion of sub-problems at various levels of abstraction. Figure 1.2 illustrates
one possible approach, depicting various facets of the problem. Except for
tracking, we touch upon each of these facets.

e Low-level analysis - person detection, head detection, head and body
tracking, body pose and gaze estimation, visual attention area etc.

15



1.3. OVERVIEW CHAPTER 1. INTRODUCTION

e Mid-level analysis - identification individual activity, person to person
interaction, group discovery, recognition of group and scene activity,
anomaly detection, personal space violation etc.

The next chapter explains various steps mentioned in Figure 1.2.

16



Chapter 2

Literature Survey

2.1 Person Detection

An object detector finds instances of objects in an image or video, for e.g.
street signs, cars, persons, faces, road etc. Object detectors are generally
based on a classifier which discriminates between presence or absence of the
object in an image. While classifiers tell only the presence or absence of
an object in an image, detectors also localize the object in the image as
illustrated in figure 2.1.

2.1.1 Region Proposals

Typically, patches within an image (also called region proposals) are fed to
a classifier which detects the presence of a person (see Figure 2.2). Patches
can be sampled using various strategies and some of them are listed below:

1. Sliding a window across the image at various scales (please refer to [15]
for details). While this method is slow as it a generates large number
of region proposals, it ensures that object is never missed except when
classifier fails.

2. Generating proposals from the image itself, for example using edges
[54] or a neural network [41].

3. Generating proposals using a fast classifier (which is generally weak)
with sliding window approach and refining them using a strong clas-
sifier (which is generally slow) [27].

2.1.2 Classification

If the speed is disregarded, the performance essentially depends on the
strength of features and classifier in use. The features and classifiers have
evolved over the years from simple handcrafted features and SVM to com-
plex CNNs. For a detailed analysis and performance comparison, one can

17



2.1. PERSON DETECTION CHAPTER 2. LITERATURE SURVEY

Figure 2.1: The difference between classifiers and detectors. The image
on the top depicts detection results and the image on the bottom shows
classification result.

refer to an excellent survey by Benenson et al. [1]. Major features and
classifiers used in pedestrian detection are listed below:

1. Traditional approaches use a combination of handcrafted features with
classifiers. These features include Haar, HOG, edges, texture, color
histogram, cosine transform coefficients, and optical flow. SVM, de-
cision trees, boosted and bagged weak classifiers are most commonly
used for classification.

2. In the deep learning regime, either simple CNNs are fully trained
or complex CNNs pretrained on massive datasets are fine-tuned, to
prevent overfitting. Since CNNs are generally slow, a weak classifier
is sometimes used to generate region proposals.

2.1.3 Datasets

Various datasets and benchmarks have been formed to organize the research
in this area and evaluate performance of the detectors. Caltech pedestrian
dataset [19] introduced in 2012, contains sequence of images containing
pedestrians taken from a vehicle. INRIA person dataset [15] is a collection
of images rather than a sequence.

18
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Figure 2.2: An overview of person detection with sliding window region
proposals.
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Figure 2.3: Types of error in pedestrian detection. False negatives 2.3a :
Caused due to unusual illumination, clothing, camera height and tilt etc.
False positives 2.3b : Confusion between a pedestrian and other objects like
pole, traffic signs, vehicles etc. Bounding Box Shift 2.3c : Incorrect selection
of correct BB among overlapping BB due to unreliable detector scores.

2.1.4 Evaluation

Scenarios (see Figure 2.3) which can independently or collectively reduce
the quality of detections are listed below:

False Negatives - Missed detections (see figure 2.3a) are the most
common source of errors in detections. The appearance of pedestri-
ans varies dramatically due to illumination, clothing, camera height,
and tilt etc. This makes it hard for classifiers to generalize well. How-
ever, missing detections can be imputed using detection in neighboring
frames in the context of videos.

False Positives - Classifiers can easily confuse between a pedestrian
and other objects like pole, traffic signs and vehicles to name a few (see
figure 2.3b). Though false detections are easier to handle in videos as
they often tend to be outliers when multiple frames are considered.

Bounding Box Shift - As evident from Figure 2.2, sliding window
can be used to obtain region proposals from an image. Thus, multiple

19



2.2. POSE ESTIMATION CHAPTER 2. LITERATURE SURVEY

patches will indicate positive score around a pedestrian. Among all
these overlapping windows, one with the highest score is chosen as
the correct bounding box (BB). This process induces spatial shifts
and inaccurate scaling in bounding box around the target (see figure
2.3¢).

If the ground truth bounding box is known and denoted by B, quality
of detected bounding box By, can be defined as:

_ |Bot(Bet]

Q=
|BgtUBdet|

(2.1)

Where @ is the quality and |-| represents cardinality or area of the bounding
box.

2.1.5 Challenges

To evaluate performance of person detectors in real surveillance videos, we
analyzed a dataset obtained from Pune police in the context of detection
using existing approaches [18, 1] (we are thankful to authors for providing
implementations). Overall, we considered 7 different and challenging scenes,
totaling 9233 frames at 25 fps. Figure 2.4 shows a montage of sample
frames from selected sequences. Results obtained from this dataset outlined
following challenges:

e Poor illumination, sudden changes in illumination.
e Foggy, rainy, hazy or dusty environment.

e Varying scale sizes of subjects.

e Low video resolution and poor video quality.

To tackle these challenges and improve performance of pedestrian detector,
we suggest some priors to supplement existing approaches, specific to static
cameras.

2.2 Pose Estimation

In this work, we define pose as the orientation of the human body in space.
Intuitively, pose detection is critical to analyze interpersonal interactions
and group formations. The Pose can also be loosely used as an indicator of
visual focus of attention, finding direct applications in surveillance.

As discussed in Section 1.2.1, a pedestrian represents only a small frac-
tion of an image, thus described by a small number of pixels. Such low reso-
lution makes pose estimation challenging and error-prone even for humans,

20



CHAPTER 2. LITERATURE SURVEY 2.2. POSE ESTIMATION

Figure 2.4: Selected frames underlining challenges of real surveillance
videos.

constraining data labeling. Thus, instead of treating pose as continuous
quantity in [0°,360°], space is quantized in a number of bins (8 directions
in this work). Under such constraints, pose estimation essentially becomes
multi-class classification problem with a cyclic order in classes.

It has been observed that the choice of classifiers and features mentioned
in Section 2.1.2 work well for pose estimation too [35, 39, 6, 51]. To further
improve performance, time filtering of the pose by combining information
from velocity and appearance has been explored by Chen et al. [3].

Most approaches ignore the cyclic order in classes, thus, treating pose
estimation simply as a classification problem. We train our own CNN with
modified cross entropy loss, out-performing state of the art in terms of mean
angular error.

2.2.1 Datasets

Pose of a person is one of its several attributes, thus annotated datasets
for pose estimation generally are bundled with other attributes and called
pedestrian attribute datasets. Table 2.1 presents a comparison between var-
ious attribute datasets that can be used for training pose detector. Parse27k
[50] contains a large set of training (50%), validation (25%) and test (25%)
images. Moreover, video recorded on the same day are in same split, mit-
igating contamination across splits. For the aforementioned reasons, we

21



2.3. GROUP DETECTION CHAPTER 2. LITERATURE SURVEY

Table 2.1: A comparison of commonly used datasets for pedestrian at-
tributes. Boxes denotes the total number of bounding boxes in the dataset.

Dataset Images | Boxes
Berkeley [7] 8,035 17,628
Parse27k [50] 9887 | ~ 27,000
CRP [21] 20,999 27,454

Learning Methods Pedestrian Attributes
v

¥ v v ) ¥
‘ Unsupervised ‘ ‘ Supervised ‘ ‘ Heuristical ‘ ‘ Trajectory ‘ ‘ Pose ‘ Trajectory
+
{ l 1 Pose

‘ Handcrafted Features ‘ ‘ Data Driven Features ‘

Figure 2.5: Division of various approaches for group detection. Our method
uses data driven features and takes advantage of both trajectory and pose.
It also learns the importance of each using training data, increasing its
flexibility.

train our pose detector on this dataset.

2.3 Group Detection

Given a set of people in a scene, partitioning them into groups which follow
some sociological reasoning is called group detection or discovery. While
group detection has direct applications in surveillance to understand and
monitor crowd behavior and detect (possibly predict) anomalies, it is also
used for scene-level analysis. Although group detection has been studied
for more than a decade, most of the approaches depend upon the specific
definition of a group and the choice of social reasoning. Figure 2.5 presents
an overview to group detection methods, with detailed explanation in sub-
sequent, paragraphs.

2.3.1 Person Attributes

Benabbas et al. [3] track feature points using optical flow and use similarity
of motion direction and spatial proximity to heuristically find groups. Jin et
al. [29] define a pairwise affinity and use automatic fast density clustering
to find group cores, which are further refined heuristically. Shao et al. [10]
treat trajectories of individuals as a Markov chain and uses transition matrix
to infer about groups. Pellegrini et al. [10] use a conditional random field to
jointly estimate trajectories and group. While these approaches work well

22



CHAPTER 2. LITERATURE SURVEY.4. ACTIVITY RECOGNITION

in densely crowded dynamic scenes, they ignore pose information which can
be useful in sparsely crowded semi-stationary scenes.

In sparsely crowded semi-stationary scenes, where people can gather and
talk, head or body orientation (pose) can be used to find groups. Bazzani
et al. [2] introduce inter-relation pattern matrix to represent pairwise in-
teraction. Marco et al. [11] estimate F-formation [30] using Hough-voting.
However, pose estimates might not be reliable due to low resolution as men-
tioned in Section 1.2.1. Our approach uses pose estimates as well as trajec-
tories to detect groups and uses training data to decide the importance of
each.

2.3.2 Learning Methods

Group detection approaches can be supervised, using structured learning
[10], classifiers like SVM [52] and/or heuristics [3, 29, 16, 11, 2]. The fea-
tures, however, are handcrafted (for e.g. proximity and similarity of ve-
locity) and heuristics derived from sociological observations, limiting their
applications to specific scenarios. In an interesting work, Solera et al. de-
termine contribution of multiple features through a Structural SVM and
formulate the problem as supervised Correlation Clustering. However, the
feature themselves are handcrafted, thus limiting the flexibility of the ap-
proach. Group detectors can also work in unsupervised fashion [21, 53], by
extracting patterns hidden in the data using temporal smoothness. How-
ever, due to the complex nature of group dynamics, learning becomes diffi-
cult. Moreover, these approaches can not adapt to specific definitions of a
group and the choices of social reasoning. Although our approach requires
annotated training data, it differs from state of the art due to two novel
characteristics:

e It can adapt to various definitions of a group by learning it from the
training data itself.

e It only uses raw trajectories and pose information, eliminating the
need to handcraft features.

2.4 Activity Recognition

Activity recognition is an active area of research due to its applications in
video surveillance, crowd monitoring and event detection 1. There are nu-
merous approaches present in the literature on scene activity recognition.
Some of the recent and interesting works are [10],[12],[11],[31],[36],[44],[15],[34],[22].
In [12], Choi et al. recognize the collective activity by extracting local
spatio-temporal descriptors from people and the surroundings. They ex-
tend the algorithm in [11] by automatically capturing the crowd context
and using it for classification. In [10], the authors go one step further and
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2.5. SUMMARY CHAPTER 2. LITERATURE SURVEY

present a unified framework for target tracking and activity recognition.
Ryoo and Aggarwal in [14] model a group activity as a stochastic collection
of individual activities. The method proposed in [22] is based on multi-
instance cardinality model with hand crafted features.

Recently, deep learning based methods have also been explored to rec-
ognize activities [28, 17, 16, 23]. Deng et al. proposed a deep model [1(]
to capture individual actions, pairwise interactions, and group activity. In
another work [17], Deng et al. first estimate the individual and scene ac-
tivities that are further refined using a message passing algorithm under
a framework of a recurrent neural network. In [28], the authors proposed
a two-staged LSTM model where the first stage captures individual tem-
poral dynamics followed by scene activity recognition based on aggregated
individual information.

Most of the existing approaches focus on scene activity recognition and
ignore the fact that multiple groups with different activities are present in a
video. Group level information can be employed for high-level applications
such as abnormal activity detection and is important to understand the
scene in its completeness. We build upon our group detector and detect
group activities as well, along with scene activity.

2.4.1 Datasets

Creating annotated dataset for group and scene activity is a challenging
task, since annotations have to be done at various levels, as illustrated in
Figure 1.2. Choi and Savarese provide a dataset containing 44 sequences
with annotated trajectories, pairwise interaction, and scene activity. We
are grateful to Neha Bhargava ! for providing annotations of groups and
group activity.

2.5 Summary

In this chapter, we explored several facets of surveillance video analysis.
We defined the steps involved and reviewed the relevant literature. Upon
analyzing related work, we discovered drawbacks of existing approaches for
pose estimation and group detection, a near complete void in literature
for group activity recognition and scope of minor improvements in person
detection. We address these issues using methods discussed in the next
chapter. Subsequent chapters will validate the usefulness of our methods
by comparing results with existing approaches. We will then summarize our
findings with conclusions in the last chapter.

!Neha Bhargava is associated with Vision and Image Processing Lab, Department of
Electrical, IIT Bombay.
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Chapter 3
Methods

3.1 Person Detection

As discussed in 2.1.5, various challenges degrade the performance of person
detectors. However, these detectors are designed for a general environment,
assuming the following are unknown:

e Camera motion.

e Camera calibration.

We propose simple post-processing steps when the camera is static and its
calibration is known.

3.1.1 Background Subtraction

Since most of the surveillance videos are obtained from cameras mounted
at fixed points, the sensor system is static in nature, with the exception of
PTZ cameras and mobile applications. Constraining camera to be static
allows background estimation by taking the mode of images recorded for
a long duration. Subsequently, background subtraction is done to obtain
silhouette of foreground objects in each frame.

Let I' € RWV>*H*3 he any RGB frame at time ¢, where W and H are width
and height of the frame respectively. Let us also denote I® € RW*Hx3 ag
the background image, which is computed as:

I’(z,y,c) = m?de{lt(x,y,c) :ted{0,1,...,7} (3.1)
Vre{0,1,...W -1} ye{0,1,...,.H—1},c € {R,G, B}

Here, {0, 1, ..., T} is the time window for computing mode. T" needs to be
kept large enough for accurate background estimation. Foreground silhou-
ette can be obtained by background subtraction across all color channels:

I = (I, ,R) = I'(,, , R))*+(I°(.,.,G) — I'(., ., G))*+
(I°(.,.,B) = I'(.,.,B))* (3.2)

25



3.1. PERSON DETECTION CHAPTER 3. METHODS

(a) Background (1% (b Frame (I?) | (c) Silhouette (I*)

Figure 3.1: An example of background subtraction. The Left image is the
computed background (1°), the image in the center is an actual frame (I?),
and the right image is the computed silhouette (1°). Clearly, in this case,
silhouette detects pedestrians along with their shadows.

Where |.| is the absolute value and I* € RW>*# . Higher the value of I°(z,y),
more are the chances of pixel location (x,y) belonging to foreground. For
any bounding box B, we define a score Sp as:

Z(aj,y)EB [S<x7 y)
|B]

This score Sg indicates weather B is part of background or not. While this

approach helps in detecting people, a major drawback is that it detects other

moving objects like vehicles and animals. Other drawback is the detection

of shadows along with the foreground object.

Sp = (3.3)

3.1.2 Target Scale

hs
5(B
be the height of B in world coordinates. Here, S(B) is a scale factor Whi(ck)l
converts height in image coordinates to the corresponding height in world
coordinates. S(B) is obtained by projecting image coordinates of B on the
ground plane using camera calibration and assuming zero elevation from
the ground. The projected length of B (see figure 3.2) is multiplied by the
ratio of the height of camera sensor to the distance of camera sensor from
the projected B.

We impose a prior on target scale since heights of most pedestrians lies
within a certain range. Let us define a score function Tj as:

hg hg
Ts= (515 5(8)

Here, (.)" and (.)” are defined as:
vt = (z+ |2])/2
7 = (2 — [a])/2

Let hg be the height of a bounding box B in image coordinates and

- Hmax)+>2 + (( - Hmin)_)2 (34)
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Figure 3.2: Calculation of scale factor S(B) using projection image coordi-
nates of B on to the ground plane.

H,... and H,,;, respectively are maximum and minimum heights of most
pedestrians in world coordinates. Even when camera calibration is un-
known, a weak approximation can be followed by assuming S(B) = 1 and
setting H,,q, and H,,;, to maximum and minimum heights of most pedes-
trians in image coordinates anywhere in the image. The Weakness of the
approximation follows from the fact that S(B) is independent of location,
thus a larger variation in height has to be allowed.

3.1.3 Modified Non-Maximum Suppression (NMS)

As discussed in Section 2.1.1, detectors essentially consist of a classifier
which gives probability (or confidence) Pg of a bounding box B containing
a pedestrian. To combine the information from background subtraction and
target scale, we define a total score Ly as:

LB = O./SB + ﬁTB + ’}/ZOQ(PB) (35)

Using Lz, NMS can be applied to retain only one ’best’ bounding boxes
per detection. Algorithm 1 presents the steps involved in our modified NMS,
which is the same as standard NMS except that we use total score Lg instead
of classifier confidence Pgz. Note that A\B = {z € Alx ¢ B} denotes
relative complement. T,,,, € (0,1) is the maximum amount of overlap
(intersection over union) bounding boxes of two unique detections can have.
Large value of T, introduces multiple detection for same person while
small values tend to miss persons standing close to each other. Intersection
over union (or IoU) is defined as |B; () B;|/|B: U B;.

From the remaining bounding boxes after NMS, one can choose appro-
priate ones using a threshold 7.4, which controls trade-off between miss
rates and false positives (see Section 2.1.4).
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Algorithm 1 Non-Maximum Suppression

1: procedure NMS

2: input: S = {(By, Lg,), (B1, Lp,), ..., (Bn, Lpy) },

3: tOpZ

4: if |BZmBJ‘/‘BZUB]’ < Tovlap for ¢ # 7, Bi,Bj eS

then return S

5: else goto loop

6: loop:

7: counter = 0

8: if ¢#j then

9: if |Bl m BJ‘/‘BZ U B;‘ > Tovlap then
10: if ngi < LBj then

11: S =8\(B;, Ls,)

12: counter = counter + 1
13: else

14; S = S\(B;, Ls,)

15: counter = counter + 1
16: if counter > 0 then goto loop
17: else return BB
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Table 3.1: Table assigning poses to angles.

Label Pose Angle 0 (in °)
1 Right 0
2 Right front 45
3 Front 90
4 Left front 135
5 Left 180
6 Left back 225
7 Back 275
8 Right back 315

3.2 Pose Estimation

As discussed in Section 2.2, most approaches ignore the cyclic order in
classes, thus, treating pose estimation simply as a classification problem.
We train our own CNN with modified cross entropy loss.

We used ResNet50 [25] pretrained on ImageNet dataset [12] as our choice
of CNN. ResNet50 (50 layers) has fewer number of parameters than its
deeper counterparts having up to 152 layers. ResNet50 (< 1 million pa-
rameters) has far lesser number of parameters than VGG16 (> 130 million)
[17]. This is important since our dataset has ~ 20,000 images for train-
ing and overfitting looms for networks with a large number of parameters.
Moreover, ResNet50 outperformed VGG16 in ImageNet competition as well.
Since we have a moderate amount of training data with only eight classes,
fine-tuning all the layers seems possible. Thus, we experimented with two
settings:

1. Fine-tuning last two fully connected layers.

2. Fine-tuning all the layers.

3.2.1 Modified Cross Entropy Loss function

We quantize the space of poses [0°,360°) into eight directions - right, right
front, front, left front, left, left back, back, and right back. These eight
classes possess cyclic order, and instead of classification accuracy, a more
suitable choice of metric is average angular error measured as:

o = S min(0() — 031, 360°  0(s) — 0G))  (36)

Here, y; is the predicted pose and yj; is the actual pose. x remy denotes
remainder when x is divided by y. N is the number of data points. 6 is a
table (see Table 3.1) which assigns angle to each class. Error metric defined
in Equation 3.6 is unsuitable for use as loss function because it doesn’t
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reflect classification probabilities. Instead, we simply add extra penalties
for misclassification when deviation from actual angle is more than 180°.
We tried adding penalties for all misclassification instead of aforementioned
criteria but training gets difficult as the objective function becomes too
constraining. Consider standard cross entropy loss:

- _% ZZ Y, yz lOg(PQ(y|$z)) (3'7)
i=1 yeC

Here 6(z,y) = 1 iff + = y and 0 otherwise. C is the set of all poses
(see Table 3.1). Pg(y|z;) is the probability of class y i.e. output of the
softmax layer for the neural network with weights © when image x; is fed
as input. Let us form a vector A; = [5(1,9;),8(2,9:),...,0(8,9;)]", also
called one-hot encoding vector, since only the entry corresponding to cor-
rect class label will be one and rest will be zero. Additionally, let us
form vectors P(x;) = [log(Pe(1|z;)),log(Pe(2|x;)), ..., log(Pe(8|z;))]" and
P(z;) = [log(1 — Po(l]z;)),log(1 — Po(2|z:)), ..., log(1 — Po(8]z:))]", i.e.
logarithm of the output of softmax layer in the CNN when input image
is x; and logarithm of its complement respectively. Equation 3.7 can be

re-written in vector form as:

1o
L= —N;Ai - P(x;) (3.8)

Here, a - b represents dot product of vectors @ and b. Let D be an 8 x 8

design matrix. We define additional penalty as:
N
_ T D
K = N ;1 A; D - P(x;) (3.9)

Matrix D determines what misclassification will be penalized. For example,
if the true class g; = 1, then AT D will pick the first row of D. Therefore,
the loss will be sum of entries of vector P(x;) weighted by first row of
D. We can set the rows of D to give more weight to corresponding wrong
classes. Thus, if probabilities of wrong classes are high, penalty K will
increase. Intuitively, D must be circulant and symmetric matrix since the
classes follow circular symmetry. We chose D to be:
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00011100
00001110
0000O0OT1T171
D 10000011
11000001
11100000
01 110000
0011100 0
The final objective function is a weighted sum of standard cross entropy

and severe misclassification penalty:
1 — 1
e T . —_— T . » .
J=- (wlﬁ ;1 A; - Pxi) +wy ;1 ATD P(a:,)) (3.10)

1 from keras.models import Model
> from keras.layers import Dense, Input, Reshape
s from keras.applications.resnetb50 import ResNetb0

s resnet = ResNetb50(weights=’imagenet’, include_top=
False, input_shape=(224, 224, 3))

¢ input_layer = Input(shape=(224, 224, 3))

r resnet_features = resnet(input_layer)

« resnet_features = Reshape(target_shape=(2048, ))(
resnet_features)

o resnet_dense = Dense (1024, activation=’relu’) (
resnet_features)

v resnet_prob = Dense(8, activation=’softmax’) (
resnet_dense)

11 pose_resnet = Model (input=input_layer, output=

resnet_prob)

Listing 3.1: Keras [13] code to define the neural network architecture for
pose estimation. include_top=False in 5" line removes top two clayers of
the ResNet50. This code allows training of all layers.

31



3.3. GROUP DETECTION CHAPTER 3. METHODS

3.3 Group Detection !

We pose group detection as a supervised clustering problem. Consider a
set of n people P = {p1,P2y..esPn}. A clustering problem is to find K
partitioning C = {G1,Gs, ...,Gk }, G; TP Vi e {1,2,..., K} such that:

Gi(1Gi=0 Vi

K
Ug =7
i=1

Here ¢ is a null or empty set and K is unknown. In words, partitioning
is mutually exclusive and completely exhaustive. Additionally, members of
same partitions should be ’close’ to each other and any two members of
different partitions should be ’far’ apart. The definition of ’close’ and ’far’
can be condensed into an affinity function f : R? x R — R, where each
element of P is a d dimensional vector. In unsupervised clustering, no data
is available to infer anything about f. Consider a different case, where N
examples for such partitioning are given. In other words, a training set 7 of
N tuples T = {(P,Ch), (P?,C?), ..., (PN,CN)} is given. Using this training
data, we can come up with a better affinity function f such that it satisfies:

e Minimum intra-group affinity

e Maximum inter-group affinity

Consider an element uw € P, where P has a known partitioning C =
{G1,Ga,...,Gk }. Also let G(u) denote the group containing u, i.e. G(u) =
A € Clu € A. We define:

Qq = max u, v
viv#u, veG(u) f( )
ﬁu = max f(u7 ’U)

v|v£u, vé¢G(u)

Here a,, is the maximum possible intra-group affinity and 3, is the maxi-
mum possible inter-group affinity for element w. It is desirable to maximize

(i, and minimize (, for each individual w € P. Hence, we minimize an

"'We are thankful to Neha Bhargava for her valuable inputs. She is associated with
Vision and Image Processing Lab, Department of Electrical, IIT Bombay.
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objective function J* for i*" training tuple (P, C?) as:

J' = Z max f(u,v) — mazx f(u,v)

e v|v£u, véG(u) v|v#u, veG(u)
(3.11)

A shown by Hornik [20] in 1991, using multilayer feedforward neural net-
works, continuous functions on compact subsets of R™ can be approximated.
Hence, neural networks can be used to represent many functions of interest.
Let us bound the range of our affinity function to f : R?xR¢ — [0, 1]. Since
[0, 1] is compact, f can be approximated using a multilayer feedforward neu-
ral network. Let us denote such a function by f,, where w are weights of
the neural network. w can be obtained by minimizing the objective function
defined in Equation 3.11 using gradient descent as it is differentiable almost
everywhere in its domain.

Our neural network consists of two fully-connected hidden layers (see
Figure 3.3 and Listing 3.2). Each layer has 32 neurons and tanh activation
function. The prediction layer of the network is a single neuron with sigmoid
activation function to ensure that the output is always in the range [0, 1].
tanh is hyperbolic tangent and sigmoid is a special case of the logistic
function, defined as:

(09 — 1)

1
sigmoid(z) = Ty

from keras.models import Model
from keras.layers import Input, Dense

n_hiddenl = 2x%xx*5
s n_hidden2 = 2*%*5
s £f_len = 18

10

-
N

inl = Input(shape=(f_lenx*2, ))

fcl Dense(n_hiddenl, activation=’tanh’) (inl)
fc2 Dense(n_hidden2, activation=’tanh’) (fc1l)
outl = Dense(l, activation=’sigmoid’) (fc2)
affinity_net = Model (inputs=inl, outputs=outl)

Listing 3.2: Keras code to define the neural network architecture. Note
that input layer’s size is f_len * 2 since features of two persons are
concatenated. Feature for each person consists of its bounding box’s
position, velocity and one-hot encoding of person’s action and pose.

Upon the completion of the optimization problem in Equation 3.11, the
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Figure 3.3: A simple multilayer feedforward neural network architecture for
learning affinity function.

function f,, can be used to predict affinity between any two persons w
and v. Suppose there are N people w1, Us,...,uy € P, where P is a new
set to be clustered. We compute the N x N affinity matrix A such that
Aij = fu(ui,u;) Vi, j€{1,2,..., N}. Clustering is performed on the affin-
ity matrix A using DBSCAN [20] algorithm. This algorithm has following
properties essential for our task (see [20] for details):

e [t can discover clusters of arbitrary shape. This is an important prop-
erty as people can form groups in various shapes. For example, in
queues, any person can have at most two neighbors. This gives rise
to a linear chain shaped cluster (Figure 3.4a). However, in talking
groups, each person may be interacting with everyone else. Thus, a
complete graph shaped cluster is formed (Figure 3.4b).

e It doesn’t need the number of clusters as a parameter, which is not
known while detecting groups. This algorithm only uses a threshold
on maximum distance beyond which two samples are not considered
in the same group, which has an intuitive interpretation in terms of
our affinity measure.
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(b) Complete graph shape in

(a) Linear chain shape in queue groups. talking groups.

Figure 3.4: Examples of different shaped groups possible in surveillance
videos. DBSCAN can discover these clusters based on pairwise affinities.

3.3.1 Learning Pairwise Interaction Directly

We formulated the group detection problem as supervised clustering. We
proposed a solution involving training and testing phases. During training,
we learn an affinity measure f,, between two individuals. During testing,
we use this measure to find the affinity matrix A, which is used by DB-
SACN algorithm to find the groups. Learning affinity measure f,, becomes
non-trivial when pairwise interactions are not available. Therefore, we for-
mulated an optimization problem 3.11.

One can indeed learn pairwise interaction directly from annotations
which might be even more informative than just the amount of interac-
tion. For example, two individuals can stand side by side while waiting on
a road crossing, they may face each other while talking or one may face
the back of other while standing in a queue. Evident from examples, such
rich interaction information will definitely be extremely helpful for activity
analysis. However, there are N? pairs to be annotated for N individuals,
increasing the labeling effort multiple-folds.

Choi et al. [9] did complete this mammoth task and their rich annota-
tion was crucial in their approach. However, upon careful inspection, we
concluded that their annotations were inconsistent. Numerous times, two
individuals were labeled to be interacting when no obvious interaction was
visible under any sociological reasoning. For this reason, we worked directly
with group annotations.

Moreover, our approach has direct applications in any supervised cluster-
ing task. For example, image can be clustered by replacing fully connected
network with a CNN which have proven to be remarkably powerful in im-

age analysis. Similarly, sequences like speech or text can be clustered using
LSTMs.
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3.4 Group and Scene Activity *

Once the groups have been discovered, the scene understanding starts to
become clearer. Although behavior of different groups is interdependent,
the inter-group interaction is rather weak and can be ignored, allowing us
to analyze these groups independently. The scene can then be inferred from
either using the group analysis information or from the individuals directly.
However, analyzing different groups is important in itself as discussed in
Section 2.4.

3.4.1 Group Activity

Once members of a group are known, we use their location, velocity, pose
and individual action information directly to recognize the group’s activity.
Consider a group G = {p1,p1,...,pn} of size N where pi,p,...,py are
feature vectors of N individuals, consisting of their location, velocity, pose
and individual action. We define a constant K, which denotes maximum
number of persons we analyze in a group. Since there can be arbitrary
number of individuals in a group, we consider three cases:

e N = K : Simply concatenate features of each individual forming a
vector g = [p1 —~ p1 — ... —~ pn| , where [ —~ y] is concatenation of
vectors « and y. Note that dim(g) = K - dim(p,).

e N < K : Concatenate features of each individual forming a vector
g=I[p1 —~p1 —~ ..~ pyn]. Since dim(g) < K - dim(p;), pad the
vector g with zeros to make dim(g) = K - dim(p1).

e N > K : Randomly sample K individuals from the group ¢, forming
G C G with |G| = K. Here |S| is the cardinality of S. Concate-
nate features of each individual in G’ to form a vector g of dimension
dim(g) = K - dim(py).

We eliminate the need of handcrafted features by directly feeding vector
g to an LSTM. LSTMs are useful in processing sequences by extracting
recurrent patterns using their memory cells. A major drawback of using
LSTMs is the need of large datasets needed to train them. Therefore we
investigate the usability of LSTMs for activity recognition in the context of
this work. Our model (see Figure 3.5 and Listing 3.3) consists of an LSTM
with 256 hidden units. We feed the LSTM with group descriptor g for 10
frames. State of the LSTM at every 10" frame is fed into a fully connected
layer with 4 neurons and softmax activation for classification. Observing
sequences for longer durations does not help because activities concerning
the scope of this work are fairly simple and localized in time.

2This work was done in collaboration with Neha Bhargava. She is associated with
Vision and Image Processing Lab, Department of Electrical, IIT Bombay.

36



CHAPTER 3. METHODS
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Figure 3.5: Neural network architecture for group detection. We use 10
frames as our sequence length, primarily because annotations were provided
at those intervals. Since activities are simple, observing sequences for longer
durations does not help.

1 from keras.models import Model
2 from keras.layers

Masking

. input_layer =

Input (shape=(10,

import Input,

LSTM, Dense,

180))

s masked_in = Masking () (input_layer)

¢ 1stml = LSTM (256,
recurrent_activation=’tanh’,

activation=’sigmoid’,

v return_sequences=False) (masked_in)
activation=’softmax’) (lstml)
s act_lstm = Model (inputs=input_layer, outputs=fcl)

s fcl = Dense (4,

Listing 3.3: Keras code to define the neural network architecture for group
activity recognition. Masking layer is used to work with sequences of Inegth

less than 10.

3.4.2 Scene Activity

Intuitively, one should expect scene activity to be highly correlated with
group activities. However, scene activity can be recognized directly from
individuals too. Even though recognizing scene activity from group activ-
ities should be easier than directly deducing it from individuals, errors in
group activity recognition can propagate and severely affect accuracy of
scene analysis. In both cases, taking cues from scene context - location of
the scene, presence of certain objects or places etc play a vital role in scene
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Figure 3.6: Neural network architecture for context unit. Pretrained
ResNet50 is used as described in Section 3.2 with fixed weights.

understanding. For example, walking on a road is actually a road crossing
activity.

To fuse scene context with group/individual information, we use a con-
text unit (see Figure 3.6 and Listing 3.4) to generate a vector of length
32. Firstly, each frame is fed into a pretrained ResNet50 (as mentioned in
Section 3.2). Output of ResNet50 is fed to an LSTM with 256 neurons.
To avoid over-fitting, we use dropout [19] with a rate of 0.9. This layer
randomly drops off inputs from previous layer during training to avoid co-
adaptation. High rates of dropout are needed since the dataset contains
only 44 sequences. Output of the dropout layer is fed to a fully connected
layer with 32 neurons and tanh activation. Output of this fully connected
layer forms the context vector.

from keras.models import Model
from keras.layers import Input, LSTM, Dense,
Masking, Dropout

resnet_layer = Input(shape=(10, 2048))

s masked = Masking () (resnet_layer)

lstml = LSTM (256, activation=’sigmoid’,
recurrent_activation=’tanh’) (masked)

dropl = Dropout(rate=0.9) (1lstml)

fc_context = Dense (16, activation=’tanh’) (dropl)

Listing 3.4: Keras code to define the neural network architecture for context
unit. We precompute output of ResNet50 for all frames and use it as input
in resnet_layer. fc_context is used as the context vector.
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Figure 3.7: Neural network for recognizing scene activity from groups.

Scene activity from groups: We add the output of group activity
recognition network 3.4.1 for all persons to form a vector of length 4. This
vector is fed to a fully connected layer with 32 neurons and tanh activation.
Output of this layer is concatenated with context vector and passed on
as input to a classification layer with 5 neurons and softmax activation
(see Figure 3.7). While it seems that deducing scene activity is easier from
groups, errors in recognizing group activity may propagate.

Scene activity from individuals: Asin group analysis 3.4.1, we con-
catenate individual descriptors (location, velocity, pose and action) to form
a scene descriptor of fixed length. We zero pad if there are fewer individuals
than the fixed length and randomly sample if there are more. This scene
descriptor is fed into an LSTM with 256 hidden units. Output of LSTM
is passed on as input to a fully connected layer with 32 neurons, output of
which is concatenated with context vector and supplied to a classification
layer with 5 neurons and softmaz activation (see Figure 3.8).
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Figure 3.8: Neural network for recognizing scene activity from individuals.

3.5 Summary

Understanding scene involves various stages as shown in Figure 3.9. The
model can be summarized as follows. The inputs to our model are bounding
boxes of the individuals (corner locations and color image) along with the
complete scene image. The bounding boxes are fed to learn individual
dynamics while the scene is supplied to learn the context. Firstly, we obtain
the individual features which are passed to a clustering algorithm to discover
groups in the scene. We train an LSTM based model to recognize group
activities. To deduce scene activity, the model utilizes group activities and
the scene context.
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Figure 3.9: Summary of the complete model with various levels of hierarchy.
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Chapter 4

Results

4.1 Person Detection

In Section 2.1.4, we discussed three types of errors that frequently occur in
person detection - missed detections, false detections and inaccurate bound-
ing box localization. If the ground truth bounding box is known and denoted
by B, quality of detected bounding box By can be defined as:

_ [BufN\Bad
|BgtUBdet|

@ as described above incorporates both miss rate and bounding box qual-
ity. Since there’s a trade-off between miss rate and false positives for any
binary classifier, we investigate results of different methods by comparing
quality @, for equal false positive rates. We test our post-processing on
three sequences - PETS 2009, TUD_Stadtmitte [38] and Towncentre [5],
since ground truth is available and camera is static. Results are summa-
rized in Table 4.1. However, we do not use calibration data, which is further
expected to improve results. Additionally, we also provide qualitative re-
sults on our own Pune dataset described in 2.1.5 in Figure 4.1

Q (4.1)

Table 4.1: Comparison of results on PETS 2009, TUD_Stadtmitte [38] and
Towncentre [5] sequences. Our post-processing steps clearly indicate im-
provements over baseline [18]. Incorporating camera calibration data can
further improve results. Values are average quality defined in Equation 4.1

Sequence Baseline Post-processing
PETS09-S21.2 0.52 0.58
AVG-TownCentre 0.35 0.40
TUD-Stadtmitte  0.59 0.64
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Z1-KHADAK-MAKAMA-P1 Z1-KHADAK-MAKAMA—P1

Figure 4.1: Qualitative comparison of baseline [18] before and after and
post-processing steps.  Left column contains the results before post-
processing while the right column contains the results after post-processing.
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4.2 Orientation Estimation

We trained and evaluated our approach for orientation estimation on Parse27k
[0] dataset described in Section 2.2. Figure 4.2 depicts selected images
from aforementioned dataset. We also compare variations of our approach
as tabulate in Table 4.2.

Table 4.2: Three variations of the described model were investigated. This
table describes the differences among the three models.

Model Name Desciption
Instead of standard cross-entropy loss, we
used the objective defined in Equation to
train the network. All layers of the network
were finetuned.

Instead of standard cross-entropy loss, we
used the objective defined in Equation to
train the network. Only last two
fully-connected (fc) layers were finetuned.
We used standard cross-entropy loss, while
finetuning all the layers.

total_loss_all layers

total_loss_fc_layers

standard_loss_fc_layers

Tables 4.3 and 4.4 summarize different models used in our experiments.
There are ~ 27,000 training images, which were resized to 224 x 224 to
match input size of ResNet50. We preprocessed images (during training and
testing) as mentioned in Keras [13] implementation' by subtracting mean
[103.939,116.779, 123.68] for RGB channels respectively. These values are
channel-wise mean of ImageNet ILSVRC15 [12] training set images. We
used a batch of 32 randomly sampled images from the dataset and fixed a
learning rate of 0.0001. We used Adam [32] optimizer, eliminating the need
of reducing learning rate since it adapts automatically. We train the model
for 10 epochs, each epoch takes ~ 10 minutes on NVIDIA GTX 1080 GPU.

We compare our results with [50], where Parse27k dataset was origi-
nally proposed. We take their best performing model - Attributes Convolu-
tional Net with hidden layers for each attribute (ACNH) trained separately
for eight orientation estimation with data augmentation (random cropping,
mirroring, and scaling) and PCA jittering as suggested in [33].

We use accuracy and average angular error 3.6 as our metrics of perfor-
mance. Recall that average angular error is defined as:

co = ¢ S min(10(u) — 051, 360° = 0(y:) — 0(3.))

'https://github.com/fchollet/keras/blob/master/keras/applications/imagenet_utils.py
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Figure 4.2: Selected frames from the Parse27k [50] dataset used for training
and testing the network.

Table 4.3: Model summary when all layers are being trained. 32 in the
output shape represents the batch size.

Layer Output Shape Number of parameters
Image Input (32, 224, 224, 3) 0
ResNet50 (32, 1, 1, 2048) 23,587,712
Fully Connected (sigmoid) (32, 1024) 2,098,176
Classification (softmax) (32, 8)
Total params 25,694,088
Trainable params 25,640,968
Non-trainable params 53,120
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Table 4.4: Model summary when only last two fully connected layers are
being trained. 32 in the output shape represents the batch size.

Layer Output Shape Number of parameters
Image Input (32, 224, 224, 3) 0
ResNet50 (32, 1, 1, 2048) 23,587,712
Fully Connected (sigmoid) (32, 1024) 2,098,176
Classification (softmax) (32, 8)
Total params 25,694,088
Trainable params 2,098,176

Non-trainable params 23,595,912

Table 4.5: Summary of results for orientation estimation including all the
models we investigated.

Model Name Accuracy (in %) Angular Error
ACNH [00] 738 -
total loss_fc_layers  60.1
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