
Hierarchical Deep Network for Group Discovery and Multi-level
Activity Recognition

Ashish Goyal
Indian Institute of Technology, Bombay

Mumbai, Maharashtra
goyal26@outlook.com

Neha Bhargava
Indian Institute of Technology, Bombay

Mumbai, Maharashtra
neha.iitb@gmail.com

Subhasis Chaudhuri
Indian Institute of Technology, Bombay

Mumbai, Maharashtra
sc@ee.iitb.ac.in

Rajbabu Velmurugan
Indian Institute of Technology, Bombay

Mumbai, Maharashtra
rajbabu@ee.iitb.ac.in

ABSTRACT
We present a deep network based hierarchical framework to recog-
nize activities at various levels of granularity - individual, group
and overall (or scene level). Most of the existing work focus on
scene activity and ignore any intermediate analysis. In this work,
we extend the existing methods by adding an extra layer that finds
the groups (or clusters) present in a scene and their activities. We
then utilize these group activities along with the scene context to
recognize the scene activity. To discover these groups, we propose
a min-max criteria within the framework to learn pairwise sim-
ilarity between any two individuals, which is used by a cluster-
ing algorithm. The group activity is captured by an LSTM mod-
ule whereas the individual and scene activities are captured by
CNN-LSTM based modules. These modules along with the group-
ing layer form the proposed network. We evaluate the network
on publicly available dataset to indicate the usefulness of our ap-
proach.
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1 INTRODUCTION
An activity video can be understood at different levels of granular-
ity that can be related to a hierarchical representation. This hierar-
chy comes naturally in crowd videos since people tend to interact
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with each other and form different groups. These groups collec-
tively influence the scene activity. Therefore, a video can be rep-
resented as a hierarchical graph where leaf nodes correspond to
the individuals, the root node corresponds to the scene, and the
intermediate layer is comprised of various groups. The suitable ac-
tivities can be assigned at these different levels in the hierarchy -
action to an individual, group activity to a group and scene activity
to the scene. The spatio-temporal interaction among the individ-
uals leads to different group activities and these group activities
along with the scene context influence the scene activity. An illus-
tration of a hierarchy in an activity video is given in Figure 1 - there
are six standing individuals and interaction among them generates
two talking groups in the scene. Since the major activity is talking,
the scene activity is also talking.

Figure 1: Illustration of hierarchy present in a video. There
are 6 standing individuals forming two talking groups. The
overall scene activity is talking.

The groups play an important role in activity analysis. Together,
the groups influence the overall activity of the crowd. Individually,
a group guides the actions of its members. Therefore, group dis-
covery and group level analysis are important in activity recog-
nition. Once the groups are known, the latent hierarchical struc-
ture in the video becomes identifiable. We propose a model that
discovers groups as well as recognizes activities at different levels
of granularity. The groups are discovered using a clustering algo-
rithm that takes similarity matrix as its input. We learn a pairwise
similarity measure from a fully connected neural network. The ob-
jective function to learn this measure is based on maximizing the
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intra-group similarity score and minimizing the inter-group simi-
larity score. To recognize a group activity, our framework utilizes
group level features that depend upon features of each member of
the group. Along with the scene context, these group activities are
then used to identify the scene level activity.

In this paper, the term action refers to an atomic movement
(e.g. stand, walk) of an individual, the term group activity denotes
an activity performed by a group and scene activity refers to the
main activity happening in the scene. The paper is organized as
follows. The next section discusses the related work. The proposed
method is explained in Section 3. The implementation and experi-
mentation details are given in Section 4 and Section 5, respectively.
Finally, the paper concludes in Section 6.

2 RELATEDWORK
Activity recognition is an active area of research due to its various
applications. There are numerous approaches present in the litera-
ture to recognize scene activity. Some of the recent and interesting
works are [2–4, 9, 13, 15, 16, 19, 20]. In [3], Choi et al. recognize the
collective activity by extracting local spatio-temporal descriptors
from people and the surroundings. In [4], they extend the algo-
rithm by automatically capturing the crowd context and use it for
classification. In [2], the authors go one step further and present
a unified framework for target tracking and activity recognition.
Ryoo and Aggarwal in [19] model a group activity as a stochastic
collection of individual activities. The method proposed in [9] is
based on multi-instance cardinality model with hand crafted fea-
tures.

Recently, deep learning based methods have also been explored
to recognize activities [6, 7, 10, 12]. In [7], Deng et al. proposed a
deepmodel to capture individual actions, pairwise interactions and
group activity. The authors in [6] first estimate the individual and
scene activities that are further refined using a message passing
algorithm under a framework of recurrent neural network. In [12],
the authors proposed a two-staged LSTM model where first stage
captures individual temporal dynamics followed by scene activity
recognition based on aggregated individual information.

Most of the existing approaches focus on scene activity recog-
nition and ignore any intermediate analysis. Hence such methods
are not suitable for the videos with multiple groups performing
different activities. We think that this group-level information is
important to understand the scene in its completeness. Such group
level information can be utilized for many high-level applications
such as abnormal activity detection.

Keeping these short-comings in the existing approaches, wemake
the following contributions in this paper:

(1) We propose a hierarchical framework to analyze a video in
its entirety - from individual action to group activity to scene
activity.

(2) Usually scene activity recognition provides only the top-
level activity ignoring activities of individual groups and
their contributions in the scene activity.We propose amethod
for group discovery and group activity recognition. Hence,
we add one more layer in the existing hierarchical methods.

(3) As a minor contribution, we also present an objective func-
tion to learn the pairwise similarity measure under the pro-
posed framework of deep network.We also present an archi-
tecture to combine the scene context with group activities
to learn the scene activity.

3 PROPOSED METHOD
In this section, we discuss the proposedmethod in detail. Themodel
has various stages as shown in Figure 2. The overview of the frame-
work is as follows. The inputs to our model are bounding boxes of
the individuals as well as the scene image. We first extract features
for all the individuals. The feature encodes action, pose, and loca-
tion of an individual. To extract these features, the bounding boxes
are fed to an individual unit described in Section 3.1. These individ-
ual features ϕ’s are utilized by a clustering algorithm to group the
individuals in the scene. Once the groups are known, we use an
LSTM based model to recognize group activities. To recognize the
scene activity, the model utilizes group activity distribution and
the scene context. In this section, we discuss the individual mod-
ules of the proposed model in detail.

3.1 Individual feature descriptor
The descriptor encodes the spatio-temporal information of the in-
dividual. To capture the appearance information, we pass the bound-
ing boxes of an individual through aCNN.We use pretrained ResNet [11]
for this CNN framework. The feature vectors thus obtained are
passed through LSTM to extract the spatio-temporal descriptor for
an individual. An LSTM consists of many memory cells which en-
able it to capture the temporal behaviour. The outputs of the LSTM
are the predicted action a and pose θ of the individual. A similar
CNN-LSTM pipeline has shown promising results in video classi-
fication problem [17]. The final feature vectorϕi for the ith individ-
ual consists of posepi , actionai and its bounding box [xi ,yi ,wi ,hi ].
These components in a feature vector are important for group de-
tection as discussed next.

3.2 Group discovery
When individuals form a group, their features (poses, actions and
locations) interact in a specific manner. For example, group mem-
bers tend to have spatial closeness and similar atomic action. The
pose compatibility is also desirable in a group. For example, two
persons standing back to back are not likely to be in a same group
but if they face each other then they aremore likely to be in a group.
Instead of defining the group formation rules explicitly, we learn
the pairwise similarity measure by training a fully connected net-
work. In a group, not all members necessarily interact with each
other. For example, the individuals standing in a queue are consid-
ered in a single group but two individuals standing far apart from
each other may not be interacting directly but via chain of other in-
dividuals. Moreover, pose and action are non-numerical data. Thus,
learning such a measure directly from group information becomes
non-trivial if the pairwise interactions are not known.

We define an objective function f to learn this pairwise simi-
larity measure which tries to maximize the intra-group similarity
score and minimize the inter-group score. Let I = {1, 2, ...,n} de-
note a set of individuals. The goal of clustering is to divide the
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Figure 2: Hierarchical learning in deep network. First, we capture dynamics ai , θi of an individual through an LSTM. This along
with the bounding box information constitutes the feature vector ϕi for the individual which is then used for clustering. f is
a pairwise similarity function and Si j is the similarity score between ith and jth persons. After clustering, the group features
are passed through an LSTM to estimate group activity g. To estimate scene activity y, we learn scene context from the context
unit which along with group activities are used to recognize scene activity y. Note that FC stands for fully connected.

individuals in a partition P, such that
⋃
ωi ∈P ωi = I where ωi is

the ith group. To do this, we learn a pairwise similarity function
fw (ϕi ,ϕ j ) parameterized by w , where ϕi is the feature vector for
the ith person. Let Pi denote the set of individuals interacting with
i (i.e. they are in the same group as of i). We define two types of
costs for ith individual - an inclusion cost αi and an exclusion cost
βi as follows:

αi = max
j,i , j ∈Pi

fw (ϕi ,ϕ j )

βi = max
j,i , j<Pi

fw (ϕi ,ϕ j )

Where αi is the maximum similarity score of i with any other
individual in Pi and βi is the maximum similarity score of i with
an individual not in Pi . It is desirable to maximize αi and minimize
βi for the ith individual. Hence, we minimize an objective function
defined as Ji = βi − αi to learnw .

To perform clustering on the pairwise similarity matrix Swhere
Si j is a pairwise similarity score for ith and jth individuals, we
use DBSCAN [8] method. It is a density based clustering algorithm
which groups the close points. The algorithm is useful when the
number of clusters is not known such as in our case. Once we have
the groups, the next stage in Figure 2 is recognition of activities of
the predicted groups. The method is discussed next.

3.3 Scene activity recognition
We define scene activity as the major activity happening in the
scene. It is highly dependent on the group activities. Additionally,

the scene context also plays an important role in determining the
scene activity. For instance, recognition of crossing activity depends
on whether a road is present in the scene or not. Hence, the scene
activity can be recognized from two cues - (a) scene context, and
(b) group activities. We propose a context unit that is used to ob-
tain the scene context and is illustrated in Figure 3. The input to
the unit is the scene. It is fed to a CNN followed by an LSTM. To
avoid over-fitting of the network, we use dropout [21]. The idea is
to drop some units randomly during training so that they do not
co-adapt too much. The output is then passed through a fully con-
nected layer to get a context vector of length 32. To get the second
cue of group activity feature, we use the histogram of group activ-
ities (length of 4) that is passed to a fully connected network that
outputs a feature vector of length 32. Both these vectors of length
32 are then combined and sent to a fully connected network that
predicts the scene activity.

4 IMPLEMENTATION
Our hierarchical network is trained in multiple stages and is imple-
mented using Keras [5]. All CNNs used in our model are initialized
by ResNet-50 [11] with pruned fully-connected layers . All LSTMs
use sigmoid function for activation and tanh for recurrent activa-
tion. Unless stated otherwise, we use softmax activation for predic-
tion layer with cross-entropy loss. We use Adam optimizer [14] to
train the networks, with a learning rate of 0.001. The details of the
stages in our network are given in the following subsections.
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Figure 3: Context unit to capture the visual information in
the scene. The scene image is passed though a CNN followed
by a LSTM with a technique of dropout.

4.1 Individual unit
Each individual unit is composed of two detectors as described be-
low:

(1) Pose detector: The poses are quantized in 8 directions. The
detector is trained on Parse-27k dataset [22] using a CNN.
During training, we modify the standard cross-entropy loss
in the network to penalize the predictions that are deviating
from the true pose by more than 90◦.

(2) Action detector: The action detector is trained using ground
truth trajectories along with the corresponding bounding
box images (see Figure 4). The training is done in an end-to-
end fashion with fixed CNN weights.

Figure 4: Individual unit for pose and action detection. To
detect pose, the image is fed to a CNN. To detect action, the
image is fed to a CNN followed by an LSTMwith 256 hidden
units. The trajectories are directly fed to an LSTM with 256
hidden units. The two outputs are concatenated and fed to a
prediction layer.

4.2 Similarity measure unit
We learn our pairwise similarity measure fw under the framework
of neural networks. The network consists of two fully-connected
layers having 32 neurons each and tanh as the activation function.
The prediction layer of the network is a single neuronwith sigmoid
activation function to ensure that the score is always in the range
(0, 1).

4.3 Group and scene activity stage
As explained before, we need to fix a number K of members to be
used in group activity recognition. Since the average group car-
dinality in the dataset is around 10, we keep K = 10 for the fixed
number approach in group activity recognition.We use 512 hidden

units in the LSTM followed by a fully connected layer of 128 neu-
ronswith tanh as the activation function and a prediction layer. For
context unit, we keep 256 hidden units in the LSTM and dropout
rate is fixed as 0.9. The subsequent fully-connected layer is com-
prised of 16 hidden units with tanh as the activation function. The
output is concatenated to the output of fully-connected layer of
group activity. This concatenated output is fed to the prediction
layer for scene activity prediction.

5 EXPERIMENTATION
In this section, we discuss the experimental results for group detec-
tion, group activity, and scene activity. We also explain the dataset
used for experimentation with the additional annotations we pro-
vide for the grouping layer. We provide results on videos in the
supplementary material.

5.1 Dataset
We use Collective Activity Dataset [3] to demonstrate the perfor-
mance of our model. The dataset consists of 44 videos covering dif-
ferent challenging videos. The authors of [3] have provided the an-
notations for five scene activities (walking, waiting, queuing, talk-
ing and crossing) after every 10 frames. Since we are interested in
finding groups and group activities also, we annotate the group
labels and group activities (walking, waiting, queuing and talking)
after every 10 frames.

NMI Purity Rand Index
0.82 0.88 0.89

Table 1: Performance of group detection algorithm on Col-
lective Activity dataset.

5.2 Group detection
To evaluate the group detection performance, we use the following
widely used measures - (a) Normalized Mutual Information (NMI )
[23], (b) Purity [1], and (c) Rand Index [18]. NMI is inspired by in-
formation theory ideas and finds the mutual information between
the two clustering outputs. Purity is defined as the average percent-
age of the dominant class label in each cluster. Rand Index penalizes
both false positive and false negative decisions during clustering.
These measures take values in [0, 1] where 1 indicates the perfect
clustering. The values of these measures obtained using the pro-
posed approach are shown in Table 1.

5.3 Group activity recognition
The confusion matrix for the group activity is shown in Figure 5.
We get average accuracy as 80.2%. If we run the framework with
true poses and true actions, we achieve 88.9% and with only true
actions, we get 84.0% of accuracy. We observe confusion between
wait and queue. We suspect that the network is unable to cap-
ture the relationship between relative locations and the associated
poses, which is required to discriminate between wait and queue.
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Figure 5: Confusion matrices for the scene activity and the group activity, obtained from the proposed method.

Method Scene activity
accuracy

Group activity
accuracy

Cardinality kernel [9] 83.4% -
Deep structured model [7] 80.6% -
Structure Inference Machine [6] 81.2% -
Hierarchical deep temporal network [12] 81.5% -
Proposed method (A) 80.5% 80.2%
Proposed method (B) 84.0% 82.1%
Proposed method (C) 88.9% 86.2%

Table 2: Comparison of our method with the state-of-the-art methods for scene and group activity. (A) True poses and actions
of individuals are unknown, (B) Only true poses are known, (C) Both true actions and poses are known

5.4 Scene activity recognition
We compare the scene activity recognition performance with [6],
[12], [7] and [9]. The average accuracies for comparison are men-
tioned in Table 2. The confusion matrix obtained from our method
is shown in Figure 5. The Cardinality Kernel [9] although achieves
the highest accuracy, but uses hand crafted features. If we run the
frameworkwith true poses and true actions, the accuracy for scene
activity reaches 86.2% and with true actions alone it goes to 82.1%.
The average accuracy of our method is at par with the state-of-the-
art methods. Additionally, we provide activities at various levels
unlike others.

Some frames from different activity videos illustrating the qual-
itative results of our algorithm are presented in Figure 6. It is clear
from these figures that our approach is able to provide meaningful
activity labels at various levels.

6 CONCLUSION
We proposed a method for hierarchical and multi-stage analysis
of activity videos. We learn the temporal dynamics of the scene
at various levels - individual, group and scene. We also estimate
the hierarchical structure present in the scene by discovering the
groups. Overall, we provide a novel approach to analyze a video in
its entirety. The results on Collective Activity dataset are competi-
tive with the state-of-the-art methods and at the same time provide
activity information at various levels.
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