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Abstract—In this paper, we consider the problem of robotic
motion tracking and following with neuromorphic vision sen-
sors. We formulate the problem in a leader-follower paradigm.
The objective of the follower robot is to perform real-time
motion segmentation of a scene and follow the leader robot.
Motion segmentation using a neuromorphic vision sensor
mounted on a mobile robot is a challenging task due to
events created by movements of the platform (self-movement).
Current approaches for tracking do not perform well during
sensor ego-motion or need a priori knowledge about the object
being tracked. To address these limitations, we designed an
algorithm based on clustering space-time events induced by
a neuromorphic sensor followed by a classification procedure.
This technique is based on a distance transformation of existing
sets. After clustering, a binary class label is assigned to each:
(1) background or (2) moving object. The classifier uses event
rates of clusters to determine proper class labels. The proposed
technique forms an important module for the creation of collec-
tively intelligent multi-pedal robots that utilize neuromorphic
vision sensors. The utility and robustness of our algorithm is
demonstrated as a real-time online system implemented on two
hexapod robots.

I. INTRODUCTION

A critical task for autonomous robots is the ability to
track and follow a targeted moving object. These objects
may have a variety of movement patterns and sizes (e.g.
person, robot, vehicle, etc.). Prior tracking-following tech-
niques have utilized RGB-D cameras [1]-[5], lasers [6],
[7], stereo camera pairs [8] and Microsoft Kinect™ [9]
based sensors. However, some approaches are specific to
a particular object to be tracked and, therefore, require a
greedy data search and classification approach. Clustering
and classification using data from a frame rate camera
demands significant computational power and time due to
high information redundancy.
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Alternatively, event based vision sensors such as the
dynamic vision sensor (DVS) [10] or asynchronous time-
based image sensor (ATIS) [11] provide asynchronous data
at a temporal resolution on the order of us. Since neuro-
morphic sensors only respond to dynamic intensity changes,
the computational overhead is minimal. In addition, due to
their analog design, they have low power requirements. In
this paper, we implement an event based dynamic vision
sensor on a six legged robot (hexapod) to develop a motion
segmentation technique that identifies moving objects against
a static background scene.

Previous tracking methods have used neuromorphic vision
sensors to implement pose estimation of known objects [12].
This method is robust to sensor ego-motion and performs
well even in cluttered scenes. However, a limitation of their
algorithm is that it needs a prior knowledge about the object
to be tracked. Convolution AER vision architecture for real-
time systems (CAVIAR) is a multichip multilayer hardware,
capable of real-time tracking and object recognition using
a large scale spiking neural network (SNN) [13]. Although
this biologically inspired network performs well for tracking
simple geometric shapes, its use is limited by the complexity
of setup and dependency on object recognition for motion
segmentation. Another technique tracks a generic class of
objects using a flexible part-based description [14], [15].
This approach performs best in situations where the scene
has low or no clutter and when a 3-dimensional object
can be described accurately as a combination of smaller
parts. Other procedures using spatiotemporal clustering with
neuromorphic sensor data have been presented for tracking
people [16], grippers for haptic feedback [17], particles
in a fluid [18] and traffic monitoring [19]. The problem
of tracking has also been formulated as one of finding
salient objects in a scene. This event-driven visual saliency
approach to tracking was implemented on the iCub platform
[20], [21]. Clearly, existing methods for tracking have two
main limitations related to: (1) ego-motion and (2) prior
knowledge about an object.

In this paper, we use hexapods as our robotic platforms
because they provide the advantage of being able to manoeu-
vre in a large variety of terrains. They also have the ability
to rapidly adapt to different forms of injury [22]. Hexapods
have a complex, non-linear and periodic motion profile,
which poses a challenge for ego-motion compensation al-
gorithms. For this reason, we use the temporal variation
and periodicity of motion magnitude for object tracking
instead of an approach involving motion estimation [23].



Our algorithm consists of two major steps as follows. (1)
Clustering of space-time events based on distance transform
maps. (2) Classification of clusters based on their temporal
variance. The emphasis of this paper is primarily on the
motion segmentation aspect of object tracking and following.
Our main contribution is the development of a framework for
performing motion segmentation using multipedal robots as
the platform.

The paper is organized as follows. We describe the func-
tionality of event-based vision sensors and details of our
algorithm based on these sensors in Section II. The results
of our experiments to assess the effect of various parameters
on tracking performance are presented in Section III. In
Sections IV we discuss the unique features of our algorithm
and its shortcomings. We provide concluding remarks and
future directions in Section V.

II. METHODS

The segmentation approach implemented in this paper uses
clustering of spatio-temporal data followed by classification
of each cluster. The classification methodology is based on
knowledge that when a hexapod moves in a tripod gait
configuration, the speed varies sinusoidally. This change of
speed results in a corresponding modulation of event rates
from the neuromorphic sensor. Hence, we hypothesize that
event rates of background clusters will correlate to the total
event rate and be distinct from event rates associated with
the leader hexapod. This clustering approach is described
in Section II-C and event rate classification technique in
Section II-D.

A. Event Based Vision Sensors

Conventional frame-based cameras acquire pixel-intensity
information from an entire image at regular time intervals.
However, any movement of the camera frame of reference
causes only incremental changes in the visual scene. This
results in data redundancy, leading to unnecessary com-
putational overhead. In contrast, frame-free asynchronous
imagers like the DVS capture intensity information at a pixel
only when there is a change in its visual field. This allows for
a natural correlation of incoming dynamic scene information
and motion magnitude of the robot. This feature allows a
system to increase the computational load only when there
is a change in the environment. A motion event, E;(x,y, p,t),
is defined as an intensity change of a pixel located at (x,y)
at time ¢ with polarity p, indicating an intensity increase
or decrease on a logarithmic scale. The subscript i denotes
the i motion event in the spatio-temporal data. The pixel
array is 128 x 128 with a time resolution of us. Hence, the
data, S, can be represented as a collection of motion events,
E;, expressed as S = {E;, i = 1,....,N}. The high temporal
resolution of the sensor allows for class characterization
using statistics derived from event rates, which is not possible
with frame based approaches.

B. Hexapod robots used

Two hexapod robots were used for experimental appli-
cation. They were controlled by an Intel Edison compute
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module in addition to a custom controller used to send servo
commands to the six legs. Each leg of the hexapod consists
of three servo motors in a daisy chain configuration. This
provides three degrees of freedom for each leg. The robot is
powered by a lithium polymer battery and controlled through
the Intel Edison’s onboard Wi-Fi. The gait control algorithm
for the hexapod is based on inverse kinematics and supports
movements in different directions. The leader hexapod was
controlled by a user while the follower hexapod’s goal was
to accurately perform the task of motion segmentation using
the neuromorphic vision sensor and follow the leader. The
hexapod used in this study is shown in Fig. 1.

Fig. 1. 3D printed hexapod used in experiments. The locomotion algorithm
is based on inverse kinematics and embedded in the Intel Edison. Communi-
cation between robots is achieved through sockets using the onboard Wi-Fi.

C. Clustering using distance transform metric

We use a matching approach based on the work of Ni, et
al. [24]. However, instead of matching against a pre-defined
object template, we perform matching with respect to the
last classified model of the leader hexapod. The algorithm is
initialized by forming clusters, C;, using a k-means approach
[25]. Each event cluster is represented as a binary image
of size 128 x 128 and a distance transform map [26], D;,
of each cluster is computed. For each cluster, let the set
P denote the motion events locations (or the cluster points,
such that PUP = C;). For all pixel locations n = (x,y) in the
distance transform map its value is calculated as

D;(n) =minl||l —n 1
]( ) Iep || HZ (1)
where ||.||> represents the Euclidean distance between two
points [ and n. Let E;;| denote a new event. Each E;.| is
assigned to a cluster, Cy, where the index k is calculated by
the following rule

k= argn&i_nDj(E,-H). )
J
The expression in Eqn. 2 assigns a new motion event to a
cluster C; which has the minimum distance transform value
for that location across all maps, D;. Distance transform
maps are updated when new events occur in a cluster. To
reduce computational load, we update the distance transform
maps after p number of events and maintain a master distance
transform map. Each pixel in the master map represents the



minimum value of distance transform across the individual
maps. The pseudo code for our real-time clustering and map
update is given in Algorithm 1.

Algorithm 1: Clustering events

Data: Events E;, dist_thresh, N
Result: Clusters
1 while Events are valid do

2 read events

3 if 3 cluster C; :dist(E;,C;) <dist_thresh then
4 assign E; to C;

5 update distance transform

6 else

7 | pass E; to buffer

8 if buffer length >N then

9 ‘ Form new clusters using k-means

10 else

11 L go back to read events

Fig. 2A shows a sample data frame, and its master dis-
tance transform map Fig. 2B calculated from the individual
distance transform maps shown in the right column Fig. 2C.

D. Classification of clusters

To classify clusters as part of the dynamic object or back-
ground, we exploit the information present in the temporal
variation of event-rates. We assume that velocity of the
sensor varies with time. This is a reasonable assumption
for gait profiles of multipedal robots. We use the existing
variability in velocity of motion profile of the hexapod, to
classify objects as dynamic or static.

For each i cluster, C;, we define A; as the instantaneous
rate of events. This rate, 4;, is a complex function of the
size of an object (S;), depth (d;), velocity (V;) and ego-
motion (Vyer); ie. 4 = f(Si,d;i,V;i,Vsers). For this reason,
we approximate A; as

F(Si,di, Vi, Vserr) = 8(Si,di) |Vi — Viery| (3)

where g(S;,d;) and V; depend on the scene and Vs depends
on ego motion of the DVS. g(S;,d;) varies smoothly with
time since d; can not vary instantaneously. Our objective is
to find all i: V; > 0; i.e. find the moving clusters among all
clusters. Simplifying notation for g(S;,d;) as g; for L clusters
and during the observation interval (¢,¢ + 0t), we define the
total event rate R(¢) as

L L

R(O=Y Ai(t) = ) 8ilVilt) = Vsers (1)]. @)

i=1 i=1
In Eqn. 4 A;(¢) is the event rate of the ith cluster (C;) which
is calculated by counting the number of events E assigned
to that cluster in time interval Ot as

2 = E<C s)

T
where the operation |.| counts the number of events belong-
ing to a particular cluster. The parameter 8¢ is an important
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Fig. 2.

(A) Snapshot of a scene containing clusters relevant to the leader
hexapod (labelled white) where the background scene is also shown (labelled
black). (B) A master distance transform map created from this configuration
of clusters (increasing values from black to yellow. (C) Individual distance
transform maps created for each cluster in the scene. Minimization of these
arrays is performed as shown in Eqn. 2, resulting in the map depicted in

(B).

parameter and its effect on final classification performance
is discussed in Section III-C.

Let m(t) denote the moving average of total event rates
described by Eqn. 4 for 1s windows. For each cluster, we
define its fractional event rate P;(¢) as

Pt) = Ait)

R(t)’
The operation defined by Eqn. 6 normalizes individual cluster
rates by the total event rate, R(r). A plot of this metric for
background and leader hexapod is illustrated in Fig. 3. As
described earlier, the gait profile of the hexapod is a sinusoid,
alternating between low and high phases. Notice that when
the velocity of the follower hexapod is in low phase. (shaded
bars), the total event rate R(f) is smaller than the moving
average event rate m(r). In this interval, we observed that
fractional cluster rates associated with the background shows
a strong correlation with the total event rate. This is because
background events are completely governed by the motion
profile of the robot. However, clusters associated with the
leader hexapod show a negative correlation with the total
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Fig. 3. Rate plots of clusters associated with the leader hexapod (green)
and background (red). Total and average event rates associated with the
entire scene are shown as dotted lines. Shaded area represents time zones
whose data is used for classification.

rate. Therefore, we classify each cluster as belonging to the
leader hexapod or background based on their correlation p;

" E[(u(r) ~ E((0)(R() ~ BR(1)]
o(2)o(R(1))
where o(.) represents the standard deviation and E(-) is

the expected value. Using this correlation value, the final
classification is performed.

p= (7

leader hexapod if p; >0

class; = if p; <0
1

®)
background
This classification is performed each time the total event rate
falls below the moving average rate.

III. RESULTS

Data were collected for a variety of settings: (1) number
of background objects present were increased gradually from
2, 3 to 4, (2) hexapod’s speed was increased heuristically to
achieve maximum event rates for the leader hexapod and (3)
distance between the hexapods was changed from 1m to 2m
in increments 0.3m to produce different cluster sizes. For
each dataset, the follower hexapod moved in a straight line
while the leader hexapod moved at a fixed velocity across
the sensor’s field of view.

A. Accuracy of classification

For each experimental condition, spatiotemporal data were
binned at constant time intervals of 20,000 s [27] and the
clusters classified as the leader hexapod’s were stored for
further use. Note that the beginning operation is performed
for data analysis only, while the algorithm is event based.
The number of frames with correct classification results were
compared with the ground truth knowledge of correct cluster
for each frame. The classification rate was normalized by
the total number of frames for each experimental paradigm
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Fig. 4. Each grid represents an experiments under specific environmental
conditions. Proportion of foreground objects with respect to background
decreases along the horizontal axis. Velocity of the follower hexapod
increases along the vertical axis. Dash represents no experiments. The
percentage average accuracy is shown in each grid.

to compute the final accuracies (see Fig. 4). In Fig. 4, the
relative proportion of foreground with respect to background
decreases along the x-axis and the leader hexapod’s velocity
increases linearly along the y-axis. Each grid point represents
the average accuracy for 4 experiments each performed under
those conditions.

These results demonstrate that the accuracy of classifica-
tion is independent of cluster size associated with the two
classes: leader hexapod and background. This is because we
have assessed the relative normalized correlation between
event rates of each cluster, which is independent of spatial
dimensions. The findings also suggest that higher speeds
of the leader hexapod produces a higher accuracies. This
is because with increased velocity of the moving object,
the event rates of the leader hexapod’s clusters increase in
value, while the event rates of background clusters remain
unchanged.

B. Success plot

We used a success plot performance metric to evaluate
our tracking accuracy [28]. At each experimental condition,
the data was converted to frames of 20,000 ps time intervals.
This was followed by ground truth labelling using a bounding
box r, for each frame. If r; denotes a bounding box computed
by our tracking algorithm, the overlap score S is defined as

e 7]
|1 Uregl

where |-| is the number of pixels. This metric calculates a
ratio of the number of correctly classified pixels of each
frame normalized by total number of pixels associated with
the ground truth and algorithm labels. The success plot was
calculated by counting the number of frames f within a
threshold number of overlapping pixels 7. This result is
displayed in Fig. 5, where the horizontal axis represents an

S= 9)
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Fig. 5. Success plot of tracking results. Each point on the curve represents
the fraction of frames f whose computed bounding boxes lie within a
threshold 7 along the horizontal axis.

increasing normalized threshold and the vertical axis is the
normalized fraction of frames. The area under curve (AUC)
is representative of the overall performance of our algorithm
with respect to the truth.

C. Performance dependency on classification parameter-8t

The classification parameter ¢ is the amount of time
(us) needed to compute the event rates for a cluster. Since
our classification strategy relies on the inherent motion
profile of the hexapod, there is an optimal value for this
parameter. This value should be small enough to capture the
multipedal robotic locomotion profile and large enough to not
cause random rate fluctuations. The effect on classification
performance while varying this parameter is shown in Fig. 6
for three datasets under different experimental conditions.
The optimal range of values for this parameter deemed as
the plateau of maximum accuracy in classification, is shown
in the shaded region of the graph.

IV. DISCUSSION

An important feature of our algorithm is the utilization of
a robot’s motion profile to calculate optimal statistics for
classification. This strategy of motor perturbation sensory
perception is not uncommon in biology. For example, sac-
cades in vision facilitate fixation and feature enhancement
[29]-[31], tympana micro-motions in ears aid with precise
source localization [32]. An algorithm utlizing platform
motion for classification is an important development since
it removes the need for compensation of sensor ego-motion.
This is possible because of the spatio-temporal data provided
by neuromorphic imagers.

We used event rates of clusters to compute classes. During
the low velocity phase of the hexapod’s tripod sinusoidal mo-
tion profile, event rates are most distinctive. This is inferred
from Eqn. 3, since it is known that for the leader hexapod
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Fig. 6. Variation of tracking accuracy plotted against classification
parameter &1, for three different datasets chosen from extreme grid points
of Fig. 4. Horizontal axis represents a log (base 2) values of 67 parameter.
Optimal values for this parameter are found to lie within [5.6,64]us, (shaded
region) which is the plateau of maximum performance in classification.

Vi > Vierr and decreasing Vi consequently increases the
value of f(.). This phase of motion is shown in Fig. 3 by
the shaded regions. During this phase, moving objects elicit
motion events whose rates are anti-correlated with the total
event rate. However, the static background scene produces
event rates in positive correlation to the hexapod’s profile.
The misclassification of the fourth shaded region in Fig. 3
is due to incorrect clustering due to scene occlusion.

In practical scenarios, clustering using distance transform
as described in this study may not produce good results due
to the large amount of spatio-temporal data that must be
processed in real-time. A distance transform based clustering
approach leads to proper assignment of motion events, when
the number of clusters formed is low (< 10). Other tech-
niques are needed to for applications where the background
activity is high.

We approximated the slow velocity phase of the follower
hexapod’s tripod gait based on intervals where the total event
rate fell below the moving average rate. This approach works
well for multipedal robots. However, the same concept can be
applied to wheeled or aerial robots by utilizing vibrations of
their platforms. This would require a more suitable statistical
metric, replacing the correlation measure.

A distance transform map of any cluster is an estimate
of the probability that a new spike-event belongs to a given
cluster. It requires a map to describe the structure of events
originating from the cluster at a given timeframe. Using a
fixed temporal lag to accumulate events often results in large
structural variation. Therefore, using a constant number of
events may lead to a more robust representation.

V. CONCLUSIONS AND FUTURE STUDY

In this study, we presented an online implementation
for robot tracking and following. We have introduced the
concept of using motor perturbations for classification and
to compute accurate temporal statistics from spatio-temporal



data recorded by a neuromorphic vision sensor. This work
contributes to the utilization of temporal statistics to classify
motion events and may be applicable to many types of
moving objects.

A general model for motion segmentation utilizing this
strategy, will be presented in another future study. We will
present a real-time algorithm that can utilize vibrations in
a robot to classify moving objects from static background
scene.
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